Destaque
Método computacional classifica e gradua severidade de biópsias de próstata
A pesquisa de mestrado desenvolvida por Maíra Suzuka Kudo no Mestrado em Engenharia Biomédica do ICT/Unifesp teve como objetivo desenvolver e avaliar um método computacional de classificação e graduação da severidade de imagens patológicas de biópsias de próstata. A pesquisa, concluída em fevereiro de 2022, foi orientada pelo professor Dr. Matheus Cardoso Moraes, do ICT/Unifesp – Campus São José dos Campos, e co-orientada pela professora Dra. Katia Ramos Moreira Leite, da Universidade de São Paulo (USP).
Para o rastreamento do câncer de próstata, é realizado o exame retal digital e o teste de PSA, sendo recomendados para todos os homens acima de 50 anos ou a partir dos 45 anos se o paciente estiver no grupo de risco. Ambos os métodos apresentam limitações de acurácia na previsão das chances de diagnóstico do câncer de próstata. “O exame retal digital sozinho representa cerca de 51% de sensibilidade. Além disso, deve-se prestar atenção às possíveis causas do aumento do PSA além do câncer, como a hiperplasia benigna da próstata, prostatite e infecções do trato urinário”, destacou Maíra.
Caso haja alguma anormalidade nesses exames, o paciente é encaminhado para a biópsia, sendo este o padrão ouro. As amostras de biópsia são analisadas por um(a) patologista especialista que assinala se há ou não presença de câncer. Essa análise é realizada por meio dos critérios de Gleason, estabelecidos nos anos 60 a fim de padronizar e classificar lesões utilizando características visuais. Segundo Maíra, “os critérios de Gleason classificam a agressividade do câncer de nível inferior como o Gleason 3 até o nível superior Gleason 5”, explicou.
A discordância entre patologistas especialistas sobre a presença de câncer nas biópsias pode chegar a 20%, o que pode ser um obstáculo para o diagnóstico da doença. Nesse sentido, pesquisas vêm analisando o potencial da implementação de procedimentos computacionais e métodos de processamento de imagem para a qualificação e quantificação do câncer. Em sua dissertação, Maíra visou implementar um método computacional utilizando Redes Neurais Convolucionais (CNNs), uma classe de rede neural artificial aplicada no processamento e análise de imagens digitais. “Classificamos patches de imagens obtidas por intervenções cirúrgicas em pacientes com e sem câncer e, posteriormente, classificamos as graduações de severidade nos padrões Gleason 3, 4 e 5”, disse a pesquisadora.
Foram obtidas 32 imagens de biópsia de câncer de próstata, as quais foram revisadas por uma uropatologista especialista. Essas imagens foram, então, transformadas em milhares de patches para alimentar as topologias propostas. Adicionalmente, mais 13 imagens retiradas do conjunto de dados aberto PANDAS foram utilizadas para complementar os dados de classificação dos padrões de Gleason 3, 4 e 5. A metodologia foi dividida em abordagens clínicas para extrair patches e abordagens computacionais para a implementação das CNNs. As imagens de biópsia utilizadas no estudo foram providas e demarcadas pela professora Katia Ramos Moreira Leite, do Laboratório de Urologia (LIM-55) do Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP).
O método apresentou uma acurácia de 98,3% na distinção entre amostras com e sem câncer. Em uma segunda topologia de classificação dos três padrões de Gleason, foram alcançadas taxas de 85%, 93% e 96% de verdadeiro positivo para os critérios de Gleason 3, 4 e 5, respectivamente. Os métodos mostraram-se eficientes na classificação de câncer de próstata e com alta acurácia na graduação de severidade. “As principais contribuições da pesquisa envolvem as topologias propostas avaliadas, identificação da sequência, quantidade e estrutura das camadas, assim como melhores configurações dos parâmetros do modelo para a classificação entre patches saudáveis e cancerígenos e para a graduação nos padrões de Gleason”, finaliou Maíra.
Acesse a dissertação completa.
Acesse a notícia completa na página da Universidade Federal de São Paulo.
Fonte: Lauren Steffen, Unifesp.
Os comentários constituem um espaço importante para a livre manifestação dos usuários, desde que cadastrados no Portal Tech4Health e que respeitem os Termos e Condições de Uso. Portanto, cada comentário é de responsabilidade exclusiva do usuário que o assina, não representando a opinião do Portal Tech4Health, que pode retirar, sem prévio aviso, comentários postados que não estejam de acordo com estas regras.
Apenas usuários cadastrados no Portal tech4health t4h podem comentar, Cadastre-se! Por favor, faça Login para comentar