Destaque

Cientistas usam inteligência artificial e rede social para criar modelo que prevê ansiedade e depressão

Fonte

Agência FAPESP

Data

sábado. 8 abril 2023 10:50

Pesquisadores da Universidade de São Paulo (USP) estão usando inteligência artificial e uma das maiores plataformas do mundo, o Twitter, para tentar criar modelos de predição de ansiedade e depressão que, no futuro, podem dar sinais desses transtornos antes do diagnóstico clínico.

A construção da base de dados, chamada SetembroBR, foi um primeiro passo e está descrita em artigo publicado na revista científica Language Resources and Evaluation. O nome é uma homenagem ao movimento Setembro Amarelo – uma campanha de prevenção ao suicídio realizada anualmente – e também pelo fato de a coleta de dados ter começado em um mês de setembro.

Na segunda etapa do trabalho, ainda em desenvolvimento, os cientistas conseguiram alguns resultados preliminares. Entre eles, o que aponta ser possível detectar se uma pessoa apresenta maior risco de vir a desenvolver depressão apenas com base na rede social de amigos e seguidores, ou seja, sem levar em conta as postagens feitas pelo próprio indivíduo.

A base criada pelo grupo engloba informações relacionadas a texto (em português) e à rede de conexões de 3,9 mil usuários do Twitter que, posteriormente ao levantamento, relataram diagnóstico ou tratamento de transtorno mental. O corpus (ou a coletânea de informações sobre determinado tema) inclui todos os tweets públicos escritos por esses usuários individualmente – sem retuítes –, totalizando cerca de 47 milhões desses pequenos textos.

“Inicialmente fizemos uma coleta nas timelines em um trabalho artesanal, analisando textos de cerca de 19 mil usuários do Twitter, o que corresponde quase à população de uma pequena cidade. E depois usamos dois conjuntos – uma parte de usuários realmente diagnosticados com transtornos mentais e outra aleatória, que serviu de controle. Queríamos diferenciar pessoas com depressão e a população em geral”, explicou o Dr. Ivandre Paraboni, professor da Escola de Artes, Ciências e Humanidades (EACH-USP) e autor correspondente do artigo.

Além dos usuários, a pesquisa coletou textos da rede de amigos e de seguidores. Isso porque é comum uma pessoa que tenha algum tipo de transtorno mental seguir determinadas contas, como fóruns de discussão ou alguma celebridade que publicamente assumiu estar com depressão. “Essas pessoas se atraem porque têm interesses comuns”, completou o professor Ivandre Paraboni, que é pesquisador associado do Centro de Inteligência Artificial (C4AI), um Centro de Pesquisa em Engenharia (CPE) constituído pela FAPESP e IBM Brasil na USP.

A FAPESP também apoia o estudo por meio do projeto “Análise da linguagem em redes sociais para detecção precoce de transtornos de saúde mental”, liderado pelo professor Ivandre Paraboni.

Distúrbios de saúde mental, entre eles depressão e ansiedade, têm sido apontados pela Organização Mundial da Saúde (OMS) como uma preocupação crescente no mundo. Estimativas do órgão calculam que cerca de 3,8% da população – ou 280 milhões de pessoas – é afetada pela depressão, de acordo com dados de 2021.

Com a pandemia de COVID-19, período em que os textos do Twitter foram coletados pelos pesquisadores, houve um aumento de 25% na prevalência global de ansiedade e depressão.

No Brasil, estudo recente do Ministério da Saúde envolvendo 784 mil participantes revelou que 11,3% dos brasileiros já foram diagnosticados com depressão, sendo a maior parte mulheres.

Pesquisas anteriores mostraram que transtornos mentais muitas vezes se refletem na linguagem usada por indivíduos que sofrem dessas condições, o que levou à realização de número considerável de trabalhos envolvendo Processamento de Linguagem Natural (NLP, na sigla em inglês), com foco em depressão, ansiedade e transtorno bipolar, entre outros. Porém, a maior parte foi realizada para a língua inglesa, nem sempre refletindo o perfil brasileiro.

Acesse o resumo do artigo científico (em inglês).

Acesse a notícia completa na página da Agência FAPESP.

Fonte: Luciana Constantino, Agência FAPESP.

Em suas publicações, o Portal Tech4Health da Rede T4H tem o único objetivo de divulgação científica, tecnológica ou de informações comerciais para disseminar conhecimento. Nenhuma publicação do Portal Tech4Health tem o objetivo de aconselhamento, diagnóstico, tratamento médico ou de substituição de qualquer profissional da área da saúde. Consulte sempre um profissional de saúde qualificado para a devida orientação, medicação ou tratamento, que seja compatível com suas necessidades específicas.

Os comentários constituem um espaço importante para a livre manifestação dos usuários, desde que cadastrados no Portal Tech4Health e que respeitem os Termos e Condições de Uso. Portanto, cada comentário é de responsabilidade exclusiva do usuário que o assina, não representando a opinião do Portal Tech4Health, que pode retirar, sem prévio aviso, comentários postados que não estejam de acordo com estas regras.

Leia também

2025 tech4health t4h | Notícias, Conteúdos e Rede Profissional em Saúde e Tecnologias

Entre em Contato

Enviando
ou

Fazer login com suas credenciais

ou    

Esqueceu sua senha?

ou

Create Account